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SUMMARY

This article analyses the stability of a thermally coupled fluid–structure interaction problem with a moving
interface. Two types of fluid and structural discretizations are investigated: finite-difference/finite-difference
as well as the more traditional finite-volume/finite-element (FV/FE) configuration. In either case, the
material properties and grid spacing are treated as uniform within each domain. A theoretical stability
analysis and corresponding numerical tests show that greater stability is associated with the algorithm in
which the fluid domain is passed a Dirichlet condition and the solid domain a von Neumann condition and
that the stability of the coupled scheme may be strongly affected by the interface velocity. Furthermore,
it shows that the interface velocity has a larger destabilizing effect on the FV/FE discretization than on
a finite-difference/finite-difference discretization. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The thermal interaction between fluid and solid domains is important in a wide range of multi-
physics problems, such as heating of vehicles in hypersonic flow [1], heating and cooling of
turbine blades in jet engines [2, 3], thermoelastic deformation of a structure due to aerodynamic
heating [4], and the ignition of solid propellants in rockets [5, 6]. A key component of fluid–structure
interaction (FSI) problems is the algorithm used for coupling the domains along the interface. Even
among algorithms that produce accurate solutions, there may be significant differences in stability
properties. Such differences are seen between loosely coupled and fully coupled schemes or between
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explicit and implicit schemes. Although the stability limits of algorithms in each sub-domain are
well established, the stability restrictions imposed by the coupling algorithms themselves are often
not well known. Furthermore, detailed knowledge of stability limitations imposed by the coupling
algorithm is very important, because an instability might manifest itself only after a large amount
of computational time, particularly in large simulations such as those presented in [6]. Despite
the importance of establishing stability limits of thermal coupling algorithms, few authors have
tackled this problem. The only substantial and general analysis appears to be that of [7]. The
detailed characterization of the stability of thermal coupling algorithms used in FSI simulations is
the focus of the present study, with particular emphasis on the effect of the interface motion.

In simulations that couple fluid and thermal solvers, a common practice is to pass one domain
a temperature (Dirichlet) boundary condition and the other a heat flux (von Neumann) boundary
condition. This problem was previously investigated by Giles [7] for the case of a fixed interface
and using a one-dimensional (1-D) finite-difference (FD) formulation for each domain. However,
the analysis presented in [7] is not able to capture the stability limit incurred by thermal coupling at
a moving interface. Interface motion may arise if the solid deforms due to the loading by the fluid
or if it regresses due to combustion, as in the case of solid propellants and other energetic materials
[5, 6, 8]. Furthermore, typical solution methods for FSI computations are not based on FD, but
rather on finite-volume/finite-element (FV/FE) methods for the fluid and structure, respectively.
For these reasons, the work of Giles [7] is extended in two ways.

First, the effect of interface motion is included in the stability analysis. The partial differential
equation corresponding to a 1-D conduction problem with a moving interface is

�C
�T
�t

+ �Cv0
�T
�x

= �
�2T
�x2

(1)

where � is the density, C is the relevant specific heat, v0 is the interface velocity, and � is the thermal
conductivity. Throughout this article, �, C , v0, and � are assumed to be constant. Equation (1)
can be used to represent each domain, though the material parameters are not necessarily uniform
across the interface. For the fluid domain, C is CV , the specific heat at constant volume, and, for
the solid domain, C is equal to the specific heat CP . Following the convention adopted in [7], the
domain which has passed the Dirichlet condition is represented by + subscripts, while the domain
which has passed the von Neumann condition is represented by − subscripts.

The second extension of the work of Giles [7] is in the stability analysis of not only the FD case,
but also of the more common FV/FE discretization. The remainder of this article is organized as
follows. The analysis of the FD case is summarized in Section 2, which contains the derivation and
numerical verification of a stability condition that incorporates non-zero interface velocity. This
analysis is repeated in Section 3 for the FV/FE discretization for both moving and non-moving
interfaces.

2. FINITE-DIFFERENCE DISCRETIZATION

Each domain in the system is discretized according to the FD formulation with grid spacings
�x+ and �x−, see Figure 1. It is assumed that the mesh extends to infinity in both directions. As
mentioned previously, the domains are discretized with a FD scheme: forward difference in time,
a backward difference for the first spatial derivative, and a centred difference for the second spatial
derivative.
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Figure 1. Schematic of discretized domain and node numbering. v0 denotes the interface velocity.

2.1. Stability analysis

In the (−) domain (x<v0t), the discretized version of (1) is

c−
T n+1
j − T n

j

�t
+ c−v0

T n
j − T n

j−1

�x−
= �−

T n
j+1 − 2T n

j + T n
j−1

�x2−
, ( j = 0, −1,−2, −3, . . .) (2)

where

T n
j =

{
T ( j�x−, n�t) if j = 0, −1,−2, . . .

T ( j�x+, n�t) if j = 1, 2, 3, . . .
(3)

�t is the time step size and c± = �±C±. In the (+) domain (x>v0t), (1) takes the similar form:

c+
T n+1
j − T n

j

�t
+ c+v0

T n
j − T n

j−1

�x+
= �+

T n
j+1 − 2T n

j + T n
j−1

�x2+
, ( j = 1, 2, 3, . . .) (4)

In order to pass thermal information from one domain to the other, the von Neumann condition
is imposed on the left side (−) and the Dirichlet condition on the right side (+), referring to
Figure 1. The flux q is computed at the left edge of the (+) domain to be passed to the (−)

domain as a boundary condition. The discrete form of the heat-flux continuity condition at the
interface (x = v0t) is thus

c−
T n+1
0 − T n

0

�t
+ c−v0

T n
0 − T n

−1

�x−
=
(

−q+ − �−
T n
0 − T n

−1

�x−

)
2

�x−
(5)

The flux is computed from (+) values in a first-order accurate manner as

q+ = − �+
(
T n
1 − T n

0

�x+

)
(6)

and is passed as the imposed interface heat flux to the (−) domain. Substituting (6) into (5) yields

c−
T n+1
0 − T n

0

�t
+ c−v0

T n
0 − T n

−1

�x−
=
[
�+
(
T n
1 − T n

0

�x+

)
− �−

(
T n
0 − T n

−1

�x−

)]
2

�x−
(7)
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Because the problem considered here is not periodic, we cannot apply the usual von Neumann
stability analysis. Instead, following Giles [7], the method of Godunov–Ryabenkii [9] is employed.
In the Godunov–Ryabenkii method, the stability of (7) is analysed by the substitution

T n
j =

⎧⎨
⎩
znk j

− if j�0

znk j
+ if j>0

(8)

Stability conditions can be established by requiring that |k|<1 and |z|<1. Further details can
be found in [9, 10].

To facilitate the analysis, the following non-dimensional parameters are defined

r ≡ c+�x+
c−�x−

(9)

d± ≡ �±�t

c±�x2±
(10)

and

�± ≡ v0
�t

�x±
(11)

The parameters defined by (9) and (10) are identical to those used in [7], while the parameters
defined by (11) correspond to the interface motion.

Focusing first on the (−) domain, (2) is solved for T n+1
j and the dimensionless parameters d−

and �− are substituted to give

T n+1
j = T n

j + d−(T n
j+1 − 2T n

j + T n
j−1) − �−(T n

j − T n
j−1) (12)

Substituting (8) into (12) yields

z = 1 + d−(k− − 2 + k−1− ) − �−(1 − k−1− ) (13)

Applying the same steps to the (+) domain leads to

z = 1 + d+(k+ − 2 + k−1+ ) − �+(1 − k−1+ ) (14)

Shifting now to the discretized interface equation (7), which, when solved for T n+1
0 becomes

T n+1
0 = T n

0 + 2�+�t

c−�x+�x−
(T n

1 − T n
0 ) − 2�−�t

c−�x2−
(T n

0 − T n
−1) − v0

�t

�x−
(T n

0 − T n
−1) (15)

or, in terms of the non-dimensional parameters d , �, and r ,

T n+1
0 = T n

0 + 2rd+(T n
1 − T n

0 ) − 2d−(T n
0 − T n

−1) − �−(T n
0 − T n

−1) (16)

Substituting (8) into (16) gives

z = 1 + 2rd+(k+ − 1) − 2d−(1 − k−1− ) − �−(1 − k−1− ) (17)
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Relations (13), (14), and (17) provide three equations for three unknowns: k−, k+, and z. To
obtain an interface stability criterion, (13) and (14) are solved for k− and k+, respectively, and the
resulting expressions substituted into (17). Solving (13) for k− gives

k−1− = 1 − �−
d− + �−

− (1 − z − �−)

2(d− + �−)

[
1 ∓

√
1 − 4d−(1 − z)

(1 − z − �−)2

]
(18)

while (14) yields

k+ = 1 − 1 − z − �+
2d+

[
1 ∓

√
1 − 4d+(1 − z)

(1 − z − �+)2

]
(19)

From (8), the conditions |k+|<1 and |k−|>1 ensure that the temperature remains finite for
j → ±∞. These requirements are fulfilled by taking the negative signs in (18) and (19). Inserting
the corresponding expressions for k+ and k− into (17) gives

z = 1 + 2rd+

[
1 − 1 − z − �+

2d+

(
1 −

√
1 − 4d+(1 − z)

(1 − z − �+)2

)
− 1

]

−(2d− + �−)

{
1−

[
1− �−

d− + �−
− 1−z−�−
2(d− + �−)

(
1−
√
1− 4d−(1−z)

(1−z−�−)2

)]}
(20)

and, solving for r , this becomes

r =
1 − z − 2d− + �−

2(d− + �−)

[
2�− + (1 − z − �−)

(
1 −

√
1 − 4d−(1 − z)

(1 − z − �−)2

)]

(1 − z − �+)

[
1 −

√
1 − 4d+(1 − z)

(1 − z − �+)2

] (21)

For stability, it is required that |z|<1. Note that z = 1 produces the trivial solution, r<∞.
Therefore, the stability criterion is found by inserting z = − 1 into (21), yielding the following
inequality for stability of the coupled scheme:

r<

2 − 2d− + �−
2(d− + �−)

[
2�− + (2 − �−)

(
1 −

√
1 − 8d−

(2 − �−)2

)]

(2 − �+)

[
1 −

√
1 − 8d+

(2 − �+)2

] (22)

In the special case of a non-moving interface, (22) reduces to

r<

√
1 − 2d−

1 − √
1 − 2d+

(23)

which is the original stability relation given in [7].
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Based on the analytical stability limit given by (22), it is possible to determine which of the
common thermal data passing algorithms is more stable, i.e. which domain should be passed
the temperature and which should be passed the heat flux. The most direct way to establish
the stability is through the value of r . As r must be less than the right-hand side of the in-
equality to ensure stability, it is clear that decreasing the value of r has a positive effect on
the stability of the simulation. Assuming similar grid spacings on either side of the interface,
r is essentially the ratio of heat capacities. Also, since CV for the fluid is generally of the
same order as CP for the solid, the magnitude of r essentially reduces to a ratio of densi-
ties. Because the density of a solid is typically much larger than that of a fluid, a small r is
achieved by dividing the fluid density by the solid density. Referring to the schematic shown
in Figure 1, this corresponds to the fluid domain being on the (+) side and the solid domain
on the (−) side of the interface, i.e. a Dirichlet condition for the fluid and a von Neumann
condition for the solid. The same conclusion was reached in [7] for the case of a non-moving
interface.

2.2. Numerical verification of stability analysis

In order to verify the analytical results, a 1-D FD thermal solver was implemented based on (2),
(4), and (7). Before attempting to confirm the generalized stability criterion given by (22) for
moving interfaces, it is necessary to first ensure that the numerical results match the analytical
stability limit for the non-moving interface. For the numerical test, the solid domain was given a
uniform temperature of 1K and the fluid domain was given a temperature of 2K. At time t = 0
the fluid domain is updated with T0 given by the solid, returning q+ as the boundary condition for
the solid domain. Both domains are 1m long with 100 nodes to ensure that end effects do not alter
the behaviour of the interface. Adopting the values d± = 3

8 , the stability criterion of (23) reduces
to r<1. Figures 2(a) and (b) clearly show that the FD solver accurately follows the stability limit
predicted by the analytical criterion (23).
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Figure 2. Evolution of the interface temperature for a stationary interface for the FD/FD discretization,
and where d+ = d− = 3

8 : (a) r = 0.99<rcrit = 1; and (b) r = 1.01>rcrit = 1.
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Figure 3. Evolution of the interface temperature for the case of a moving interface for the FD/FD
discretization, with d+ = d− = 1

4 and �+ = �− = 1
2 : (a) r = 0.66<rcrit = 2

3 ; and (b) r = 0.667>rcrit = 2
3 .

Focusing now on the case of a moving interface, the stability criterion given by (22) shows that
r = 2

3 is the stability limit when d± = 1
4 and �± = 1

2 . Figure 3(a) corresponds to a simulation using
an r value of 0.66, which demonstrates stability as predicted. Similarly, in Figure 3(b), r = 0.667
and the interface temperature grows slowly, again as predicted. These two figures confirm the
stability limit predicted by (22).

2.3. Discussion

Figure 4 presents the dependence of the critical time step value on the interface velocity, showing
excellent agreement between analytical and numerical values. The detrimental effect of the interface
motion on the stability of the numerical scheme is clearly demonstrated, as an increasing interface
velocity requires a decrease in the time step to retain stability.

Through the stability criterion, the region of stability can be presented as a function of the
dimensionless parameters that define the problem. Figures 5, 6(a), and 6(b) show the stability
limits in the (d+,d−) plane for various values of r or �±, where the stability region lies below
each curve. The d+ and d− axes range from 0 to 1

2 because the latter represents the stability limit
for each sub-domain in the absence of coupling.

In Figure 5, the interface is stationary (�± = 0) and each curve represents a different value
of r . Clearly, r has a direct impact on the shape and size of the stability region. Taking r = 1 as the
base value, Figure 5 shows that increasing r pulls the curve towards the d− axis, while decreasing
r pulls it towards the d− = 1

2 line. In the limiting case where r = 0, the stability region becomes
the entire region d±� 1

2 , which is the limit for each sub-domain in an uncoupled simulation.
This result arises because, when r approaches zero, the product c−�x− approaches infinity, i.e.
d− tends to zero. The thermal solution in the (−) domain then becomes stationary in time. Hence,
the system is effectively decoupled and the stability limit of the (+) domain becomes the only
relevant criterion. For the opposite case, where r approaches infinity, the stability zone shrinks to
zero; the simulation is unconditionally unstable. By the same reasoning, when r and, thus also,
d− approach infinity, the (−) solution changes too rapidly for stability to be maintained.
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Figure 4. Effect of the interface velocity on the critical time step size for the FD/FD
discretization. �x+ = �x− = �x and �tcrit0 denote the critical value of the time step for a

non-moving interface, as described by (23).
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Figure 5. Effect of r on the predicted stability zones for the case of a stationary interface (�± = 0) for
the FD/FD discretization. The stability regions lie below the curves.

Figure 6(a) is similar to Figure 5, but the interface is not stationary (�± = 1
4 ). The overall shape

of the curves is unchanged by the interface velocity even though they have been shifted down and
to the left, effectively reducing the area of the stability region. The �± dependence of the limiting
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Figure 6. Predicted stability zones for the case of a moving interface for the FD/FD discretization:
(a) �± = 1

4 ; (b) r = 1; (c) r = 1 and �− = 1
4 ; and (d) r = 1 and �+ = 1

4 .

value of d± arises from the terms √
1 − 8d±

(2 − �±)2
(24)

appearing in (22). Therefore, the limiting cases are determined by

d± = (2 − �±)2

8
(25)

When �± = 1
4 , d± = 49

128 ≈ 0.383, which matches the results shown in Figure 6(a). Physically, this
new limit means that, for a specified system (fixed grids and material properties), increasing the
interface velocity requires the time step to be reduced to maintain stability.
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Figure 6(b) shows the stability zones with r = 1 and as a function of �±. Clearly, as �± increases,
the stability region decreases as expected. For �± = 2 the stability curve shrinks to a point at the
origin, implying that no value of d± will give a stable result. The critical value arises because of
the term 2− �± appearing in the denominator of (22). This indicates that the interface may move
by, at most, two grid spacings per time step. This result is to be contrasted to the classical CFL
(Courant–Friedrichs–Levy) condition for hyperbolic problems, which limits waves to travel only
one cell per time step.

Figures 5 and 6(a) and (b), have reduced the stability problem from five parameters to four by
assuming that �+ = �−. However, as the grid spacings in each domain are not required to be the
same, the stability regions are now examined as �+ and �− vary independently. Figure 6(c) shows
the stability regions with r = 1, �− = 1

4 , and �+ varying from 0.25 to 1.75. It was previously stated
that the effect of increasing �+ and �− together is to shift the stability region down and to the left
in the (d+, d−) plane. Figure 6(c) shows that varying only �+ shifts the stability curve vertically.
Similar results are demonstrated in Figure 6(d), in which �− is varied, as changing �− produces
a horizontal shift in the stability zone. Although results have only been shown for the case where
�±>0, similar conclusions will hold if �±<0.

3. FINITE-VOLUME/FINITE-ELEMENT DISCRETIZATION

Now a different discretization that is more conventional in FSI problems is considered: FE for the
solid domain and FV for the fluid domain. Since the discretization of the fluid and solid domains
is not the same for this system, the fluid domain is referred to as + and the solid domain as −.
This implicitly assumes that the fluid domain should be given the Dirichlet boundary condition and
the solid domain given the von Neumann condition, as suggested previously by the study of the
FD/FD discretization. The main difference, as shown in Figure 7, is in the discretization near the
interface, where the centroid of the first fluid control volume is no longer located on the interface,
but instead is offset by �x+/2. As will be shown below, this difference has important implications
for the stability of the coupled scheme.

The semi-discrete FE formulation used to solve the 1-D heat equation in the solid domain is

[C]{Ṫ } + [K ]{T } = {R} (26)

− 3 − 2 − 1

Moving
Interface

0 1
2

3
2

v0

(−) )+(
=⇒Temperature

⇐=Heat Flux

∆ x− ∆ x+

cell 1 cell 2

Figure 7. Schematic of discretized domain and node numbering for FV/FE discretization.
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where the vector {T } contains the nodal temperature values

{T } = 〈T0 T−1 T−2 . . .〉T (27)

[C] is the lumped capacitance matrix, [K ] is the stiffness matrix, and {R} is the load vector. For
two-node 1-D thermal elements, these are

[C]= c−�x−

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(28)

[K ] = �−
�x−

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1

−1 2 −1

−1 2 −1

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+ c−v0

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 1

−1 0 1

−1 0 1

. . .
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(29)

and

{R} = �−
�x−

〈q+ 0 . . .〉T (30)

All blank spaces in (28)–(30) represent zero entries. The discretization is completed by employing
the forward Euler time integration scheme. For interior solid nodes, the fully discretized explicit
thermal equation is thus

c−�x−
T n+1
j − T n

j

�t
+ c−v0

2
(T n

j+1 − T n
j−1)

− �−
�x−

(T n
j+1 − 2T n

j + T n
j−1) = 0, ( j = − 1, −2, . . .) (31)

Similarly, for the interface node, the discretized equation is

c−�x−
2

T n+1
0 −T n

0

�t
+c−v0

2
(T n

0 −T n
−1)−

�−
�x−

(T n
0 −T n

−1) = q+ (32)

where the interface flux passed by the fluid domain is

q+ = �+

(
T n
1/2 − T n

0
1
2�x+

)
(33)
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The FV formulation used to represent the fluid domain is obtained by integrating (1) with respect
to x . For a single cell, the result is

c+�x+
dT

dt

∣∣∣∣
n

j
+c+v0(T

n
j+1/2−T n

j−1/2) = �+

(
dT

dx

∣∣∣∣
n

j+1/2
− dT

dx

∣∣∣∣
n

j−1/2

)
,

(
j = 1

2
,
3

2
, . . .

)
(34)

where j denotes the cell index. T n
j±1/2 are computed by a simple average, while dT/dx |nj±1/2 are

computed by a centred difference, with the exception of j = 1
2 , when T n

0 is a boundary condition
and dT/dx |n0 is given by a one-sided difference. Discretizing the time derivative with the forward
Euler scheme gives

c+
T n+1
j − T n

j

�t
= − 1

�x+
Rn
j (35)

where the residual Rn
j is the net flux out of cell j at time step n.

Unlike the FD solution, the FV solution is not computed the same way in each cell. Because
of the offset, the treatment of the first cell is

Rn
1/2 = − �+

T n
3/2 − T n

1/2

�x+
+ �+

T n
1/2 − T n

0

�x+/2
+ c+v0

T n
3/2 + T n

1/2

2
− c+v0T

n
0 (36)

For all other cells, i.e. j> 1
2 , the residual is given by

Rn
j = −�+

T n
j+1 − T n

j

�x+
+ �+

T n
j − T n

j−1

�x+
+ c+v0

T n
j+1 + T n

j

2

− c+v0
T n
j + T n

j−1

2
,

(
j = 3

2
,
5

2
, . . .

)
(37)

3.1. Non-moving interface

The stability criterion of the FV/FE discretization will first be derived for the simpler case of a
stationary interface, for which the stability criterion for the FD scheme was given by (23).

3.1.1. Direct extension of [7] to finite-volume/finite-element case. To obtain the stability criterion
for the case of the FV/FE discretization, the same method used in the FD/FD analysis is applied,
i.e. determining k− and k+ assuming that they are uniform within their respective domains and
substituting them into the interface relation. Beginning with the solid domain with v0 = 0 in (31),
the substitutions corresponding to (8) and the non-dimensional parameters given by (10) result in

z = 1 + d−(k− − 2 + k−1− ) (38)

or

k−1− =
z − 1 + 2d− ±

√
(1 − z − 2d−)2 − 4d2−
2d−

(39)
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To obtain k+ only the solution for the first cell is needed. Therefore, substituting (36) into (35)
with v0 = 0 and solving for T n+1

1/2 gives

T n+1
1/2 = T n

1/2 + d+(T n
3/2 − 3T n

1/2 + 2T n
0 ) (40)

Together with (8), (40) leads to

z = 1 + d+(k+ − 3 + 2k−1/2
+ ) (41)

which can be expressed as a cubic equation for k+. It can be shown that only one real solution
for k+ exists for (41) for all d+.

The interface relation is obtained by substituting (33) into (32), setting v0 = 0, and solving
for T n+1

0 :

T n+1
0 = T n

0 + 4rd+(T n
1/2 − T n

0 ) − 2d−(T n
0 − T n

−1) (42)

which, together with (8), leads to

z = 1 + 4rd+(k1/2+ − 1) − 2d−(1 − k−1− ) (43)

Finally, solving for r and setting z = − 1 leads to the stability criterion:

r<
−2 + 2d−(1 − k−1− )

4d+(k1/2+ − 1)
(44)

Substituting (39) for k− and (41) for k+ into (44) with, as indicated before, |k+|<1 and |k−|>1
gives the analytical stability limits of the coupled FV/FE problem.

The accuracy of (44) can be established through direct comparison with a FE thermal solver using
two-node elements coupled with a FV fluid solver. Figures 8(a) and (b) depict the variation of rcrit
with d− and d+, respectively, where rcrit is given by (44). Figure 8(a) shows excellent agreement
between numerical and analytical results for all values of d−. However, Figure 8(b) shows that
the numerically determined stability limit exhibits two distinct regimes. The first is an upward
directed concave curve, where rcrit initially decreases with increasing d+, reaches a minimum, and
then increases. In the second regime, which exists when d+ is greater than approximately 0.35 for
the given case, the critical value of r decreases with increasing d+.

The solid curve in Figure 8(b) represents the stability limit predicted by (44). This curve has
the same U-shape as the first regime of the numerical data, and, for small values of d+, the
agreement with numerical results is very good. Figures 9(a) and (b) give insight into the level of
agreement. With d+ = 1

10 and d− = 1
4 , the predicted value of rcrit is 4.009. As expected, r = 4 gives

a stable result while r = 4.01 is unstable. However, the analytical results fail to accurately follow
the numerical data within the first regime for d+ between roughly 0.25 and 0.35, and, after the
transition to the second regime, fail to even capture the correct downward trend of the numerically
determined rcrit values.

3.1.2. Spatially dependent k+ and z. Figure 8(b) shows that the stability criterion, based on the
assumption that k+ is uniform in the fluid domain, produces inaccurate results with growing d+ in
the first regime and completely fails to capture the second regime. To improve the accuracy of the
stability criterion, the assumption that k+ be the same for each fluid cell is relaxed. In other words,
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Figure 8. Numerical versus analytical stability limits for the FV/FE discretization with a non-moving
interface with: (a) effect of d− with d+ = 1

10 ; and (b) effect of d+ with d− = 1
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Figure 9. Evolution of the interface temperature for a stationary interface for the FV/FE discretization,
and where d+ = 1

10 and d− = 1
4 : (a) r = 4<rcrit = 4.009; and (b) r = 4.01>rcrit = 4.009.

it is no longer sufficient to use the solution for a single cell in determining k+, as the value of k+
at each location influences, and is influenced by, neighbouring cells. Therefore, the expression for
k+ at cell 1 must be derived by taking into account adjacent cells. The more the cells are included
in the analysis, the more accurate the result is likely to be.

To determine an expression for k+ in cell 1, including the influence of adjacent cells, k+ is first
determined for a cell sufficiently far from the interface. It is reasonable to assume that, for cells
very far from the interface, the effect of the cell 1 discretization is very small. This means that k+
reaches a constant value as j → ∞. For an interior cell j , where j is sufficiently large, combining
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(35) and (37) with v0 = 0, solving for T n+1
j , and substituting the dimensionless parameters gives

T n+1
j = T n

j + d+(T n
j+1 − 2T n

j + T n
j−1) (45)

Using (8), this becomes

z+ = 1 + d+(k+ − 2 + k−1+ ) (46)

where z+ represents the uniform value of z for fluid cells far from the interface. Equation (46) is
exactly the same as the result of the FE implementation for the solid domain. This is a consequence
of assuming a uniform grid and a centred approximation to the derivatives. Solving (46) for
k+ gives

k+ =
z+ − 1 + 2d+ ±

√
(1 − z+ − 2d+)2 − 4d2+
2d+

(47)

Assuming that k and z are different for each cell, (40) can be rewritten as

z1 = 1 + d+
[
k3/22 k−1/2

1

(
z2
z1

)n

− 3 + 2k−1/2
1

(
z0
z1

)n]
(48)

where k1, k2, z1, z2, and z0, respectively, denote the values of k+ and z in cells 1, 2, and at the
interface, and n indicates the time level. Selecting k2 = k+ given by (47), the result, when inserted
into (48) is

k1 =
{

z1 − 1 + 3d+
d+[(z2/z1)nk3/2+ + 2(z0/z1)n]

}−2

(49)

which provides a new solution for cell 1 that can be substituted into the interface relation given
below. This is the stability criterion attained by assuming that cell 1 is affected by adjacent fluid
cells. The accuracy of the result depends on how many fluid cells are included in the analysis.
For example, if only the first cell is considered, it is implicitly assumed that k2 = k+, which is the
uniform value for the fluid. However, if the first two cells are taken into account, it is assumed
that k3 = k+ which is used to solve for k2, and finally, k1. This process can be extended to any
number of cells. Because k+ for interior cells is negative for all values of d+, k1 must be a complex
number. As an increasing number of cells are included in the analysis, the imaginary part of k1
approaches zero and the stability criterion approaches a converged result.

Finally, the stability criterion for the case in which k and z are spatially dependent is

r<
z0 − 1 + 2d−[1 − k−1− (z−/z0)n]

4d+[k1/21 (z1/z0)n − 1]
(50)

Since |z|<1 for stability, each z j may be specified as 1 or −1. Setting n = 1 allows sign differences
for various z to result in different solutions. Assuming that for each z in the expression for k1 as
well as z for the solid domain and z at the interface can be either 1 or −1, there are 64 resulting
stability limits when three fluid cells are considered.

The dashed curve in Figure 8(b) represents the stability criterion based on (50) where k1 is
determined by taking the first three fluid cells into account and all z j = − 1. This curve is similar
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Figure 10. Evolution of T n+1
j /T n

j versus time for temperatures at and near the fluid–structure interface
for a FV/FE simulation: (a) d+ = 0.146 (first regime); and (b) d+ = 0.378 (second regime).

in nature to the solid curve, however, it accurately follows the numerical results throughout the
first regime. The dot-dashed curve in Figure 8(b) represents the stability limit based on k+ again
derived including three cells, where n = 1 and z− = − 1, z0 = − 1, z1 = 1, z2 = − 1, z3 = − 1,
and z4 = − 1, which is the closest fit for all possible combinations of z to the second d+ regime.
Unfortunately, for this region, the stability limit is only captured qualitatively, no matter how many
fluid cells are included in the analysis.

The reasons for the discrepancy have so far eluded any investigation and might be associated
with the difference in the numerical instability observed in the two regimes, as illustrated in
Figures 10(a) and (b), which present the evolution of the ratio T n+1

j /T n
j at four positions in the

vicinity of the interface ( j = − 1, 0, 1
2 , and

3
2 ). Figure 10(a) shows the onset of instability in the

first regime, for d+ = 0.146 and r slightly greater than rcrit. Two observations can be made. First,
the instability is truly driven by the interface, which first becomes unstable and is followed by the
first fluid and solid nodes, as the instability propagates into each domain. Second, for all cases,
the ratio T n+1

j /T n
j approaches −1 as t → ∞. This justifies the assumption z = − 1 that underlies

the analysis that led to the analytical prediction described above.
Figure 10(b) corresponds to a simulation where r>rcrit and d+ = 0.378 is in the second regime.

This figure is very similar to Figure 10(a), however, z does not approach a constant value as
t → ∞. It appears, based on the heavier shading in this region, that the average value of z in this
case is still −1. However, the spurious oscillations suggest that perhaps z = − 1 is not the only
limit. Figures 11(a) and (b), which show the evolution of T n+1

0 versus T n
0 , give a better insight

into the difference between the instability of the two regimes. In the first regime, represented by
Figure 11(a), a linear relationship exists between T n+1

0 and T n
0 with time, where the slope is −1. In

Figure 11(b) the evolution of T n+1
0 versus T n

0 for the second regime takes an elliptical form, where
the major axis has a slope of −1. This reinforces the idea that the z = − 1 limit, though present
in the second regime, is not the only limit affecting the stability of the simulation. Furthermore,
it might be an indication that the ansatz of the Godunov–Ryabenkii method (8) may no longer be
valid for d+ in the second regime.
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Figure 11. Evolution of T n+1
0 versus T n

0 for a FV/FE simulation: (a) d+ = 0.146 (first regime);
and (b) d+ = 0.378 (second regime).

Though the form of the stability criterion for the FV/FE discretization is quite different from
that of the FD/FD discretization, the conclusion regarding which data-passing algorithm is more
stable remains the same. The coupling algorithm selection for the FD/FD discretization was based
entirely on the fact that r must be less than some critical value. Because that fact is true for the
FV/FE discretization as well, the conclusion remains valid. Therefore, as before, the fluid domain
should be passed a Dirichlet boundary condition while the solid domain is passed a von Neumann
condition.

3.2. Moving interface

A similar analysis can be performed for the moving interface case. Applying (8), (10), and (11)
to (31), k− becomes

k−1− =
z− − 1 + 2d− ±

√
(1 − z− − 2d−)2 − 4(d2− − �2−/4)

2d− + �−
(51)

For the fluid domain, combining (35) and (37) gives, with the aid of (8), (10), and (11),

k+ =
z+ − 1 + 2d+ ±

√
(1 − z+ − 2d+)2 − 4(d2+ − �2+/4)

2d+ − �+
(52)

To determine k1 using three fluid cells, (35) and (37) are expressed for cells 2 and 3, as well
as (35) and (36) for the first cell, assuming k4 = k+. Simultaneously solving these equations, the
result for cell k2 is

k2 =
(

(z2 − 1 + 2d+)(z3 − 1 + 2d+) − (d2+ − �2+/4)

(d2+ − �2+/4)(z4/z2)nk
7/2
+ + (d+ + �+/2)(z1/z2)n(z3 − 1 + 2d+)k1/21

)−2/3

(53)
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Figure 12. Numerical versus analytical stability limits for FV/FE discretization with a moving interface.
�+ = �− = 1

4 in both cases: (a) d+ = 1
10 while d− varies; and (b) d− = 1

4 while d+ varies.

while k1 is given by

k1 =
(

z1 − 1 + 3d+ + �+/2

(d+ − �+/2)k3/22 (z2/z1)n + 2(d+ + �+/2)(z0/z1)n

)−2

(54)

This provides a stability criterion when inserted into the interface condition. The solution changes
based on how many cells are used to compute k2 and on the signs of the various z.

Combining (32) and (33), using the dimensionless parameters and (8), and solving for r gives

r<
z0 − 1 + (2d− − �−)[1 − k−1− (z−/z0)n]

4d+[k1/21 (z1/z0)n − 1]
(55)

Substituting (54), based on (53) for k1, gives multiple stability criteria, distinguished by varying the
signs of z. Again, the positive roots in (51) and (52) must be chosen to ensure bounded temperature
fields as |x | →∞.

In Figure 12 the variation of rcrit as a function of d− and d+ is shown, with �± held constant at
1
4 . Although the specific values of r are different here, when compared with Figure 8, the results
are qualitatively the same. The rcrit versus d+ curve again shows two distinct regimes, the first of
which is captured well by the stability criterion using k+ given by (54) with all z = − 1, and the
second, which is captured qualitatively but not matched quantitatively. As in the non-moving case,
Figure 12(a) shows that d− has no effect on the accuracy of the solution. Since the constant value
of d+ used lies within the first regime, agreement between the analytical and numerical stability
limit is very good for all d−.

Though Figure 12 shows good agreement between numerical and analytical results when d+ is
within the first regime, they represent only a single non-dimensional grid velocity. It is important
to determine whether the value of �± affects the quality of the results. Figure 13 again shows rcrit
versus d+, however, multiple curves are shown, each representing a different value of �±. As �±
increases, the rcrit curve shifts upward and the width of the first regime decreases, i.e. the transition
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to the second regime occurs at a smaller values of d+. Again, the numerical and analytical results
match well within the first regime. From this test, it is discovered that the numerical limit on
�± is approximately 0.65, though the stability criterion suggests no such limit. For �± larger, the
simulation is unconditionally unstable. This is in contrast with the FD/FD discretization, where
the limit on �± is 2. The analysis is not able to capture the �± limit.
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Figure 14 shows the variation of the time step size with interface velocity. While these parameters
are generally not as useful as the non-dimensional r , d±, and �±, they provide a clearer image
of the effect of grid motion on the stability. As in Figure 4, �tcrit0 refers to the critical time
step size for the case of a stationary interface. The stability limit of the FD/FD discretization is
also included. It clearly shows that for comparatively small interface velocities, the two numerical
schemes have essentially the same stability characteristics. However, for larger velocities, the FD
method is more stable than the FV/FE discretization.

As in Figure 12(b), the numerical results match the predicted stability limit well within one
regime, beyond which the error grows. Below v0�tcrit0/�x ≈ 1, the error is very small. For larger
velocities, the trend of the curve does not fit with the numerical results. However, even within this
range, the predicted stability limit can serve as a useful guide in determining a stable time step
size.

4. CONCLUSION

A stability study of two explicit coupling schemes has been performed for transient thermal fluid–
structure problems. The first scheme involves a FD treatment of both fluid and solid domains,
while the second one uses the more common FV/FE combination. The stability analysis has been
conducted using the Godunov–Ryabenkii method and the analytical results have been verified
numerically. Special emphasis has been placed on the effect of the interface motion on the stability
limit, i.e. on the critical size of the time step beyond which the coupled numerical solution becomes
unstable.

It has been shown that the interface velocity, v0, can have a strong effect on the stability of the
explicit coupling scheme: the higher the value of v0, the smaller the critical time step size. The
results also indicate that a stable time stepping scheme can be obtained for the FD/FD coupled
problem as long as the interface moves by less than two grid spacings per time step. As in the
case for stationary interfaces, the most stable coupling scheme involves transferring the heat flux
(i.e., a von Neumann boundary condition) from the fluid to the solid and passing the interface
temperature (i.e., a Dirichlet boundary condition) from the solid to the fluid.

The stability criterion for the FV/FE case is more complex than that of the FD case and involves
various instability modes, but the overall dependence of the critical time step size on the interface
velocity is very similar. For small values of v0, the critical time step size remains independent on
the amplitude of the interface velocity. When the ratio between v0 and the grid spacing becomes
comparable to the critical time step size in the absence of interface motion, the critical size of the
time step decays rapidly with increasing interface velocity. In that regime, the FV/FE discretization
appears to be much less stable than its FD/FD counterpart.
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